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1. INTR~DIJCTI~N 

It is well known that nonlinear instability may occur when partial differential 
equations such as the advection equation, Burgers’ equation, the KdV equation, and 
the generalized KdV equation are approximated by finite difference schemes, even if 
the corresponding linearized equations are stable. Philips [ 11, Arakawa [2 1, 
Richtmyer 131, Fornberg [ 11 1, and Majda [ 121 studied nonlinear instability and 
showed that linearized analysis and constant-coefficient analysis may fail to predict 
instability. 

In this paper, we show that for a class of evolution equations there exists an 
implicit difference scheme which is nonlinearly stable without any conditions on 
At, Ax. 

From the following example concerned with numerical integration of ordinary 
differential equations, we can get some useful information: Consider an ordinary 
differential equation 

If we can rewrite it in the form 
j = F(t, y). (1.1) 

?; =f(& Y) J (1.2) 

and ifS(t, .Y) < 0 for all 0 < t < T, a <y < b, and y* = 4’“. then the implicit scheme 

(Y n+ ’ - y”)/At =f(t, y*)(ayni ’ + (1 - a) j*“) (1.3) 

is absolutely stable when CI > 4. 
From (1.3) we have 

~~~‘(1 -Atczf(t,y”))=(l +At(l -a)f(t,y”))~f’ 

or 

I ’ + ’ = (1 + (1 - a) Atf (t, y”))/( 1 - a Atf(t, y”)) y” = Sq”‘. 

Note that 1 SI < 1 when a > +. 

(1.4) 
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This scheme is of first-order accuracy, even if a = 4. If y* = (y”’ ’ + y”)/2, it is of 
second-order accuracy, but is nonlinear. Therefore it is not convenient to apply it. 

We now apply the predictor-corrector procedure 

y” =y” +At/?f(t,y”)y”, f-t’ =y” +Atf(t,y*)(ay”+’ + (1 -u)y”)/2. (1.5) 

It is evident that this scheme has second-order accuracy when a = i, /I = f. 
Moreover, it is absolutely stable because f(t, y *) is nonpositive. Then (1.5) is linear 
in y”+’ and hence is very easy to solve. 

We can extend the result obtained in the above example to a general operator 
equation. 

2. NOTATION AND PRELIMINARIES 

In this section, we give some definitions and preliminary lemmas. Let At and h be 
the increments of the time and space variables, respectively. Let u”, denote the value 
of the mesh function u(n At, mh) at the point x = mh and t = n At, where n and m are 
positive integers. 

We define the inner product 

(2.1) 

and norm 

Ilull = (u, u). (2.2) 

The forward, centered, and backward difference approximations are denoted 
respectively by A+, A,, A_ of 8/8x. 

u, = A+ u; = (u”,, , - u;)/h, (2.3) 

ui=A,u~=(u~+,-u~_,)/2h, (2.4) 

u,--A-a:,=@:,-z&,)/h, (2.5 1 

ut = A; u; = (u”,+ ’ - u;)/Ar. (2.6) 

If u”, and vi are periodic in m with period N, we have 

(A + u, u) = -(u, A - u), (2.7) 

(A_u,u)=-(u,A+v), (2.8) 

(A,, u, u) = -(u, A,, v). (2.9) 

The proof of Lemmas l-7 is simple and is therefore omitted. 
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LEMMA 1. 2(u3 u,) = (l142>t -At Ibl12. 

LEMMA 2. (24, u,,) = - /I u,_I12. 

LEMMA 3. (u, A: A’ u) = (-1) /lA’z.I/*. 

LEMMA 4. (u,A (qt I)I(q+2du*)4 + (U,A(,, ,,,(q+2,64*b4) = 0, 

where A (qt t)/(qi 2) = (l/b + 2)) @A,. + (l/k + 2))-4uq.. 

LEMMA 5. (u. A+ A& u) = 0. 

LEMMA 6. (1) 2(u, A:A’f’u) = (-1)‘h lIA:+‘uJJ’. 

(2) 2(u, A’+t’A~u) = (-l)r+‘h /lA’f’u(12. 

LEMMA 7. (u, A; A,A’u) = 0. 

3. THEOREMS 

We consider the nonlinear evolution equation ti = F(t, u). Let it be rewritten in the 
form 

au(t)/& = A& u) u, O<t,<T, (3.la) 

40) = &I 3 (3.lb) 

where A, is in general a nonlinear differential operator and 8 is a real parameter 
which will be used below. 

We shall discuss initial value problem (3.1) in L,. The boundary condition, if any, 
will be periodic. 

Suppose that for every parameter 0 we have 

(A,@, u>w u) < 0, (3.2) 

so that the operator A, is nonpositive. Multiplying (3.la) by U, intergrating over 
space x, and making use of (3.2) we get 

(alat>(u(t>> u(t)) ,< 0. (3.3) 

This means that the solution of Eq. (3.1) is continuously dependent on the initial 
value. 

In order for the difference scheme of Eq. (3.1) to be stable for a long time 
integration, we must choose a proper parameter 6’ so that the corresponding difference 
operator .dO satisfies a condition analogous to (3.2), namely, 

(~~;(t, 24 *>u, u) < 0. (3.3’) 
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Applying the backward Euler integration formula to Eq. (2.1), we obtain 

u”,“(t) = u;(t) + At .Eqt, uy ‘) u; ’ 

If the trapezoid integration formula of Eq. (2.1) is used, we obtain 

u;+ ‘(t) = u;(t) + At .M’&, (u”,+ ’ + u;)/2)(u;+ ’ + u;)/2. 

(3.4) 

(3.5) 

Difference equations (3.4) and (3.5) are nonlinear, however, and not easy to solve. 
Linearizing Eqs. (3.4) and (3.5), we get 

u”,+ ‘(t) = u”,(t) + At .dO(e(t, u *) uy ‘, (3.6) 

u;+ ‘(t) = u”,(t) + At .r4,(t, u*)(u”,+ ’ + uk)/2, (3.7) 

where U* is known. 

THEOREM A. Difference equations (3.6), (3.7) are absolutely stable if’ the 
d@erence operator -“4,, which is the approximation of difSerentia1 operator A,, 
satisfies condition (3.3’) for all t, 0 < t < T, un E C. 

ProojI Multiplying (3.6) by u”,+’ and summing over all m, we get 

IIf' (u ,u n+')=(Un,Un+')+(.~~(t,u*)u"+',u"t'). 

Noting (3.3’), we then have an energy inequality 

by Schwarz’s inequality. 

IIU n+‘ll G IIu”II (3.8) 

For the scheme (3.7), we multiply (3.7) by (u;” + u”,) and sum over all m to get 

ttu nt1_ u”), (U”+’ + u”))* = (A@#, U*)(lP+ ’ + u”)/2, (P+ ’ + u”)/2). 

Noting (3.3’), we get the same energy inequality 

II 2.4 n+lll < ll~nlI~ (3.9) 

and the proof of theorem is completed. 

Remark. For scheme (3.7), the equality holds in (3.9) provided condition (3.3’) 
is satisfied with equality. 

Now we take the predictor-corrector procedure 

u,* = u”, + At pJqt, u”) u;, u;+’ = u”, + At .d&, u*)(au;+’ + (1 - a) Uk). 

(3.10) 

For this scheme, we have 
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THEOREM B. Predictor-corrector scheme (3.10) is absolute& stable if the 
difference operator .I$ which approximates dl@erential operator A, for some 
parameter 8 satisfies condition (3.3’) for all t, 0 < t < T, un E C. Moreover, this 
scheme has second-order accuracy ifp = i, a = i. 

The proof is similar to the one above. The second-order accuracy is obvious. 

THEOREM C. For the leap-frog scheme 

IIf1 
@?il -u;-‘)/(2&)=.&(t,u*)u;, (3.1 1) 

suppose that the d@erence operator .tiO satisfies condition (3.3’) for some 0, then we 
have a quasi-energy inequality 

(u n+‘, u”) < lIu”Il for all n (n = 1, 2. 3 ,... ). (3.12) 

Proof: Multiplying (3.11) by u: and summing over all m, noting (3.3) we obtain 

(u “+I, u”) < (LP, zr’). 

We first use the forward time difference scheme 

(u:, - uo,)/dt = &qt, u”) u”,. 

Because of (3.3’), we have 

(u’, uO)< lI~“/12. 

Therefore 

(3.13) 

(u n+‘, 24”) ,< (u”, u”-’ )~...~(u’,u”)~I~uo//2. (3.14) 

Remark. For scheme (3.1 I), the quasi-energy equality holds in (3.14) provided 
condition (3.3’) is satisfied with equality. 

4. APPLICATIONS 

4.1 The Advection Equation or Model Nonlinear Wave Equation 

Consider an advection equation 

u, + uu, = 0 (4.1.1) 

which possesses an infinite number of conservation laws (41. In order for the 
difference equation to be stable for long time calculations, the difference equation 
should be established on the basis of the energy conservation law rather than of the 
quality conservation law. 
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For Eq. (4.1.1), we take the differential operator 

(4.1.2) 

Obviously (A,(& u)u, u) = 0 for every parameter 8. The difference operator .dO, 
which approximates the differential operator A,, takes the form 

d&24)=(1 -B)u#4,+(8/2)4,24 *. (4.1.3) 

By Lemma 4 in Section 2, it is not difftcult to prove 

(Ed& u*)u, 24) = 0. (4.1.4) 

Hence -~&(t, u*) is nonpositive. With u* = zP, scheme (3.6) takes the form 

u ;+ l = 24; + (df/3)(U”, do u;+ l + A, 24; u;+ 1). (4.1.5) 

Using Theorem A, we have 

i.e., scheme (4.1.5) is absolutely stable. 
When u* = u”, scheme (3.7) has the form 

u ;+I = u; + (dt/6)(u;d,u;+’ +d,u;u;+‘) + (dt/6)(u~d,u; + d,u”,u;). 

(4.1.6) 

Using the remark following Theorem A, we have 

IIU n+‘lI = lIUnll = lIuOII, 

i.e., scheme (4.1.6) is absolutely stable. 
In order to arrive at the second-order accuracy, we take ,fI = 4; then (3.10) is 

reduced to 

u; = u; + (dt/6)(u”,d, u; + d,u”, - u;), 

u ;+’ = u”, + (~lt/6)[(24,*,4,u”,+’ +d,u,*u”,+‘) + (u,*d,u”, +,~,u,*u;)~. 

Using the remark following Theorem B, we obtain 

Ilu n+’ 11 = I/u” 11 = 11 u” II. 

A very similar result, but for a nonlinear scheme, is proved in [3, p. 1421. 
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4.2 Burgers’ Equation 

We take the operator A, of (2.1) in the form 

A (t u)=(l -d)u’i~““-+b~ 8 2 
3X 2 ax ‘ax2 . 

Then the corresponding difference operator has the form 

,~~(l,u)=(1-8)ud,+(8/2)d,u. fvd+d.. 

Take 19= $ and notice Lemmas 2 and 4. It is not difficult to prove 

(4.2.1) 

(4.2.2) 

(‘d*&, u *) 24, u) < 0. (4.2.3) 

Then scheme (3.6) is of the form 

,;+I = u”, + (At/3)(u;A0u”+’ + +A,u,*u;+‘) + vAtA+A-u;+‘. (4.2.4) 

Upon setting u* = zP+i, we have 

u;+ I = u”, + (Ar,‘3)(u;+ ‘A, u”m+ * + ;A, u”,+ ‘u”,+ ‘) + v At A + A u;+ ‘. (4.2.5) 

Expanding this equation into the form of equations with filter 151, we obtain some 
relations between filter parameter k and parameter 6’ 

k=O corresponding to f9= 1, 

k=co corresponding to 8 = 0, 

k=2 corresponding to o= 4, 

k=-1 corresponding to o= 2, 

k== 1 corresponding to 8= 5. 

In scheme (4.2.4), i.e., 6’=+ or k= 1 let u*=P 3 m rn’ Using relation (4.2.3) and 
Theorem A, we have 

II u n+ ’ II < II u* II. 

Thus scheme (4.2.4) is absolutely stable. It is evident that if u,* = u”,’ ’ and 0 = f 
(i.e., k= 1) as in [5], then scheme (4.2.5) is also absolutely stable, but then the 
equation is nonlinear and not convenient to solve. 

Applying scheme (3.10), we get 

u,* = u; + (AtP/3)(u;A ,u;+A,u;u;)+vpAtA+A-u:, 

,;+I = u; + (At/6)(u,*A,u;+’ + A&$;+‘) + v(At/2) A+ A_ u;+’ (4.2.6) 

+ (At/6)(u,*A,u:, + A,u,*u;) + v(At/2) A+ A- u;. 
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With a similar argument (i.e., making use of relation (4.2.3) and applying 
Theorem A), we can show that scheme (4.2.6) is absolutely stable, 

II u “+lll < lIu”lI. 

If /I = i, this scheme has second-order accuracy. 

4.3 KdV Equation 
u, = uu, + u xxx. (4.3.1) 

This equation possesses an infinite number of conservation laws. We establish a 
difference equation based on the second conservation law in preference to one based 
on the first conservation law. 

For Eq. (4.3.1), we take the differential operator 

(4.3.2) 

A(t, u) is a nonpositive operator. The difference operator A takes the form 

&&,u)=(l -e)ud,+(B/2)d,u. +d+d,&. 

Taking B = 5 and using Lemmas 4 and 5, we get 

(‘dyt, u *> u, u) = 0. 

Applying scheme (3.6), we get [7] 

(4.3.3) 

U “,+‘=u”,+(At/3)(u”,A&+‘+A,u:,u~+’)+AtA+A,A~u;+’. (4.3.4) 

Using equality (4.3.3) and Theorem A, we get 

II 24 n+ ’ II < II un I/* 

Applying scheme (3.7), we obtain [6] 

24 ~+‘=U”,+(A~/~)(~“,A,~~+~+A,~“,~“,+’)+(A~/~)A+A,A_U~+’ 

+ (At/6)(u;A,u; + A,u”,u”,) + (At/2) A+ A,A- u”,. (4.3.5) 

Using equality (4.3.3) and Theorem A, we get 

II u !I+ ’ (1 = )I u” II. 

Using scheme (3.10), we get a predictor+orrector procedure [8] 

u,* = u”, + @ At/3)(u”,A ,u”,+A,u”,u”,)+At/?A+A,A-u”,, 

u”,” = u”, + (At/6)(u;A,u”mt1 $ A,u,*u”,+‘) + (At/2) A+A,,A~un,+’ 

+ (At/6)(u;A,u”, + A,u;u”,) + (A@) A+ AJ- u”,. 
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This scheme has second-order accuracy. Applying Theorem B and equality (4.3.3). 
we obtain 

4.4 The Equation 

This class of equations possesses at least three conservation laws 191. 
For Eq. (4.4.1) we take the differential operator 

#g &9. p+’ 
A&, u) = (1 - e) 244 2 + -- 

ax q+l ax +axzrtl* 

A,(& u) is a nonpositive operator because 

(A &, u) u, u) = 0. 

The difference operator .& takes the form 

-Fpe(t.U)=(l-e)u9A,+(e/(q+ l))d,uq.+d:dod’. 

Taking 8 = q + l/q + 2, we get 

.r9 (9+*,,(4+2)(f9 u) = (l/(q + 2)) u9A, + (V(q + 2))4,u9* +A:A,A’ 

Applying Lemmas 4 and 7, we obtain 

W k7+lm+*dt~ u*)uY u) = 0. 

Applying schemes (3.6), (3.7), and (3.10), respectively, we obtain 

u ;+I = u”, + (At/(q + 2))[(2&)” AoIl;+’ +A&4,)” Id;+*1 +AtA:A,A’u;+ 

(4.4.1) 

(4.4.2) 

(4.4.3) 

(4.4.4) 

(4.4.5) 

(4.4.6) 

Ui+’ = u”, + (a dt/(q + 2))[(u$)” A, u:+’ + A,(uk)” uk”] + At aA\ A,A[ u:+’ 

+ (’ - aW/(q + 2))[(GJ” A, U” + A&4,)” u;] + (1 - a) At A: A,A’ u;, 

(4.4.7) 

u,* = u; + C/3 At/(q + 2))[ (24)” A ,, u:, + Ao(u4,)” u”,] + p At A: A, A’- u;’ ‘, 

U”tl 
m =u”,+ ~[(u”,)*A,u~tl+A~(~~)*u,,t’]+aAtA;A,A’u”,*’ 

+(I -a) -$$ I(G)* A ,,u: + A,* uk] + (1 - a) At A; A,AL u”,. 

(4.4.8) 
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Using relation (4.4.5) and the Lemmas and theorems for scheme (4.4.6), we have 

II u n+‘l/ < II4. 

For schemes (4.4.7) and (4.4.8), taking a = $ we have 

IIU n+‘/I =IIu”jl. 

Moreover, scheme (4.4.8) has second-order accuracy when /3 = $. 
For the equation 

u,=uyu, +au*,+,, (4.4.1’) 

we only considered linear stability in [lo]; now we consider nonlinear stability and 
show the following: 

THEOREM D. (1) The symmetric Crank-Nicholson scheme for (4.4.1’) is 
absolutely stable when a > f, 19 = (q + l)/(q + 2); 

(2) The right Crank-Nicholson scheme for (4.4.1’) is absolutely stable when 
(-1)‘.a>o, a>+, B=(q+ l)/(q+2); 

(3) The left Crank-Nicholson scheme for (4.4.1’) is absolutely stable i+,hen 
(-1)‘*a<O,u>~,e=(q+l)/(q+2). 

Proof. Scheme (4.4.7) can be rewritten in the form 

%=4q+lMq+2) (t, u *)(u” + a At u,). (4.4.7’) 

Multiplying (4.4.7’) by u” + a At uI, and taking the inner product, from (4.4.5) we 
have 

(u,, u” + a At u,) = 0. 

Applying Lemma 1, we get 

f(Il~“l12)~-~~tjl~,l12 + aAtllu,ll’ =O, 

i.e., i linI[~ - At(; - a) 11 u,ll* = 0. 
So when a > i and 8= (q + l)/(q + 2) the symmetric Crank-Nicholson scheme is 

absolutely stable. 

DEFINITION. The Crank-Nicholson scheme is called right if azrt ‘/,x2” ’ z 
A’+ LA 

t -. 

For the right Crank-Nicholson scheme, the difference operator has the form 

d- ts+u,tqt& u>= (l/k? + 2)) ~‘4 + (l/b + 2))4,u4. + aA’+t’A:. 
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(See Fig. la.) Applying Lemmas 4 and 6(2), we obtain 

_-- 
c47+ I)l(q+z) (6 u*)& u) < 0, when (-l)r+’ . a < 0, i.e., (-1)’ . a > 0. 

Multiplying (4.4.6) by un + a At U, and taking the inner product, from (4.4.7) we 
have 

(u,,u”+aAtu,)<O. 

Applying Lemma 1, we get 

4 11~11:-~~~~-~)1/~,112 GO. 

SO when a > 4, (-1)’ . a > 0, 8= (q + I)/(q + 2), the right symmetric Crank- 
Nicholson scheme is absolutely stable. 

DEFINITION. The Crank-Nicholson scheme is called left if 82rt ‘/?x2’ + ’ z 
A: A’+‘. 

For example, the stencil when r = 1 is shown in Fig. lb. 
For the left Crank-Nicholson scheme, the difference operator has the form 

,-A .F (qt m+;k u> = (l/h + 2)) u4A, + (l/(q + 2)) A,u4. + aA; AL+ ‘. 

Applying Lemmas 4 and 6(l), we obtain 

GZZ (6 u*)u, u) < 0 when (-1)‘. a < 0. 

The proof of (3) is the same. 

‘:III 
m-i m  m+i m+2 

m-2 m-i m  m+i 

FIG. 1. (a) Stencil for the right Crank-Nicholson scheme. (b) Stencil for the left Crank-Nicholson 
scheme. 
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4.5 The Equation 

24, = UQU, + (-l)r+’ UZr. (4.5.1) 

This class of equations possesses only one conservation law 161. For Eq. (4.5.1), 
we have the differential operator 

a e auq. 
A&u)=(l -e>z44-+-- 

ax q + 1 ax 
+(-l)“‘& (4.5.2) 

A,(& u) is a nonpositive operator because 

(44, u)u, u) < 0. 

The difference operator & takes the form 

&(t, u)= (1 - 0) uqd, + (O/(q + l))d,uq. + (-l)rt’ d; A’. (4.5.3) 

Taking 0 = (q + l)/(q + 2), we get 

d qt,,qtZ(tr~)=(l/(q+2))~q~A~+(l/(q+2))A~~q~+(-l)rS’A~A~. 

(4.5.4) 

Applying Lemmas 3 and 4, we obtain 

(-%t ')/(4+2) (t, u*)u, u) < 0. 

Applying schemes (3.6), (3.7), and (3.10), respectively, we obtain 

u;’ ’ = u:, + (At/(q + 2))[ (~4,)” A, u;’ ’ + A&9,)” u”,+ ’ 1 + At A”+ A’ u”,’ ‘, 

u”,+ ’ = u; + (a At/(q + 2))[ (~4,)” A, u;+ ’ + A,,(@,)” u”,’ ’ 1 

+aAt(-l)‘+‘A;A’u”,f’ 

(4.5.5) 

(4.5.6) 

+ ((1 - a) At/b + 2))[(GJ” A, 4, + 4,Wi)” u”, I 
+(l-a)At(-l)‘+‘A;A’u”,, (4.5.7) 

u; = u”, + (p At/(q + 2))[(24;)” A,,$ + A&4,)” u”,] +/I At(-l)‘+ ’ A: A: u”,, 

u ;+I = u; + (a At/(q + 2))[($)* Aou;+’ + A&y,)* u”,+‘] 

+aAt(-l)‘+‘A~A’u”,+’ (4.5.8) 

+ (1 - a)Wl(q + 2))[(@,,)* A,u”, + 4M,)* Gl 
+ (1 -a)At(-l)‘t’ A:AIu”,. 

Scheme (4.5.7) can be rewritten in the form 

%=-%t‘mt*, (t, u*)(u” + a At u,). (4.5.7’) 
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Multiplying (4.5.7’) by U” + a At U, and taking the inner product, from (45.7) we 
have 

(u,, u” + a At u,) < 0. 

Applying Lemma 1, we have 

~llulI:-~~(f-~)I/~,l1*~~. 

THEOREM E. The symmetric Crank-Nicholson scheme for (45.1) is absolutely 
stable when a > f, 0 = (q + I)/(q + 2). 

Remark. Predictor-corrector scheme (4.5.8) is absolutely stable when a > f and 
0 = (9 + l)/(q + 21, and has second-order accuracy wen j3 = f, a = f. 

5. NUMERICAL COMPUTATIONS 

In the present section, we discuss only Burgers’ equation 

(5.1) 

(5.2) 

u, = uu, + vu,,. 

The initial and boundary conditions are taken to be 

u(x, 0) = -1 for -0.5 < x < 0, 

= +1 for 0 <x < 0.5. 

The exact solution is given to a good approximation by the steady state 

u = tanh(x/2v). 

All the solutions discussed in the present paper are obtained with 128 equally spaced 
grid points, Ax = l/128 = 0.007825. We calculate the solution of (5.1) with the 
difference scheme (4.2.6), which can be written in the form 

i 

At 
12Ax 

At At - uz+mu 
n+l _ 

12Ax mtt -fii?, 

where 

(5.3) 
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u*=un + AtP ,, u:,+,-C-, 
m m y-- urn 

K 2Ax 
+( 

G+ 1)’ - Gc- 1)’ 
2Ax I 

+ 
@At 
dx2 Ml,, - 2u; + u;- ,). 

In matrix form, we have AU”’ ’ = u”, where A = I + At R, R is an N x N matrix 
depending on Ax and U”, and I is the unit matrix. It is not difficult to show that 
(AU, U) = I/ UI/*. Thus by Schwarz’s inequality, we have IIAU/I > 11 U/I. Hence A is 
invertible and in practice we solve Au”” = U” with a band solver. 

Computations were done on machine model 013 of the Computer Center of the 
Academia Sinica. Numerical solutions of system (5.3) have been obtained for (/I = 4, 
a=+) v=O.OOl, 0.002, 0.003, 0.004, 0.005, and 0.01. See Table I. We list only half 
of the table because the solution is antisymmetric. As our time step we select 
At = 0.01. 
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