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1. INTRODUCTION

It is well known that nonlinear instability may occur when partial differential
equations such as the advection equation, Burgers’ equation, the KdV equation, and
the generalized KdV equation are approximated by finite difference schemes, even if
the corresponding linearized equations are stable. Philips [1], Arakawa |[2],
Richtmyer |3], Fornberg |11], and Majda [12} studied nonlinear instability and
showed that linearized analysis and constant-coefficient analysis may fail to predict
instability.

In this paper, we show that for a class of evolution equations there exists an
implicit difference scheme which is nonlinearly stable without any conditions on
At, Ax.

From the following example concerned with numerical integration of ordinary
differential equations, we can get some useful information: Consider an ordinary
differential equation

y=F( ). (1.1)
If we can rewrite it in the form
y=sty)y (1.2)
and if f(1,y) <0 for all 0t T, ay<b, and y* =p", then the implicit scheme
(" =y A= 1 y*Nay" ™+ (1~ a) ") (1.3)

is absolutely stable when a > 1.
From (1.3) we have

U = dtaf (") = (1 + 41 — a) f(5, ")) »"
or

W =1+ (1= a) e f{, y")/ (1 — a de f(t, p™)) y" = Sy". (1.4)
Note that [S| < | when a > 1.
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This scheme is of first-order accuracy, even if @ = 4. If p* = (p"*' + y")/2, it is of
second-order accuracy, but is nonlinear. Therefore it is not convenient to apply it.
We now apply the predictor—corrector procedure

=yt Affeynyyt, Yy =yt Ay )" + (- a)y)/2. (LS)

It is evident that this scheme has second-order accuracy when a=13, f=71.
Moreover, it is absolutely stable because f(¢, y*) is nonpositive. Then (1.5) is linear
in y"*! and hence is very easy to solve.

We can extend the result obtained in the above example to a general operator
equation.

2. NOTATION AND PRELIMINARIES

In this section, we give some definitions and preliminary lemmas. Let A4¢ and £ be
the increments of the time and space variables, respectively. Let u), denote the value
of the mesh function u(n At, mh) at the point x = mh and ¢ = n At, where n and m are
positive integers.

We define the inner product

N
(wooy=h > ul vl (2.1)
m=1
and norm
lull®> = (u, u). (2.2)

The forward, centered, and backward difference approximations are denoted
respectively by 4, 4,, 4_ of d/ox.

wy = A=, — )/, (23)
Ug= Agty = (U1 — Up_1)/ 2R, (2.4)
up=4_uly = (uhy— )k, 25)
u =A uly =yt —ul)/4n (2.6)

If ), and v}, are periodic in m with period N, we have

(A+u’ U)=—(H,A_U), (27)
(4_u,v)=—(u,4.v), (2.8)
(dou, v)=—(u, 4,v). (2.9)

The proof of Lemmas 1-7 is simple and is therefore omitted.
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LeMMA 1. 2(u,u) = (|ul?®), — 4t | u,|’.
LEMMA 2. (u, u,5) = — [lugl®.
LEMMA 3. (w4, 4" u)= (=1)"||4" ul*.

LEMMA 4. (U, 44 1)) @)U+ 0.4 44 1y n@*)u) =0,

where A, 1yqsn = (1/(q +2)) udy- + (1/(q +2) du®..
LEMMA 5. (u, 4, 4,4 _u)=0.

LEmMA 6. (1) 2(u, 4, 4" 'u) = (=1)h |47 'u|’.
(2) 2(u 4747 u)= (1) R[4 u.

LEMMA 7. (u, A7, 4,47 u)=0.

3. THEOREMS

We consider the nonlinear evolution equation # = F(¢, u). Let it be rewritten in the

form
ou(t)/or = A (1, u)u, 0<tT, (3.1a)

u(0) = u,, (3.1b)

where A4, is in general a nonlinear differential operator and # is a real parameter
which will be used below.

We shall discuss initial value problem (3.1) in L,. The boundary condition, if any,
will be periodic.

Suppose that for every parameter # we have

(Aot wu, u) <0, (3.2)

so that the operator A, is nonpositive. Multiplying (3.1a) by u, intergrating over
space x, and making use of (3.2), we get

(6/60)(u(1), u(r)) < 0. (3.3)

This means that the solution of Eq. (3.1} is continuously dependent on the initial
value.

In order for the difference scheme of Eq.(3.1) to be stable for a long time
integration, we must choose a proper parameter € so that the corresponding difference
operator .7, satisfies a condition analogous to (3.2), namely,

(4 (t, u*)u, 1) 0. (3.3")
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Applying the backward Euler integration formula to Eq. (2.1), we obtain
wy NO) = up(t) + At syt uy ) uy' (3.4)
If the trapezoid integration formula of Eq. (2.1) is used, we obtain
(1) = 1 (0) + At/ (8 (up ™+ up)/ 20+ ui)/ 2. (3.5)

Difference equations (3.4) and (3.5) are nonlinear, however, and not easy to solve.
Linearizing Eqgs. (3.4) and (3.5), we get

up" (0 = up () + At At uF) (3.6)
ul 1) = ul(t) + Ar (e, w*Yunt + ul)/2, (3.7)

where u* is known.

THEOREM A. Difference equations (3.6), (3.7) are absolutely stable if the
difference operator 7y, which is the approximation of differential operator A,,
satisfies condition (3.3') for all t, 0 <t < T, u" € C.

Progf. Multiplying (3.6) by u%*' and summing over all m, we get
@ u™t Yy =@ u" )+ (A )t umt ).
Noting (3.3’), we then have an energy inequality
[l < " (3.8)
by Schwarz’s inequality.
For the scheme (3.7), we multiply (3.7) by (u""' + u") and sum over all m to get
(@ =), @ ) = (Sl @ U2, @ u)2),
Noting (3.3'), we get the same energy inequality
™ =M< e, (3.9)

and the proof of theorem is completed.

Remark. For scheme (3.7), the equality holds in (3.9) provided condition (3.3")
is satisfied with equality.

Now we take the predictor—corrector procedure
uf =ul + At faty(t, u™) ul,  ult = ul + At Lt uF Yol + (1 — o) ul,).
(3.10)

For this scheme, we have
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THEOREM B. Predictor—corrector scheme (3.10) is absolutely stable if the
difference operator 7y which approximates differential operator A, for some

parameter 8 satisfies condition (3.3') for all t, 0t T, u" € C. Moreover, this

scheme has second-order accuracy if =13, a=1.

The proof is similar to the one above. The second-order accuracy is obvious.
THEOREM C. For the leap-frog scheme
Wt — )@ A1) = syt u )l (3.11)

suppose that the difference operator <7, satisfies condition (3.3') for some 0, then we
have a quasi-energy inequality

W huy||ulll forall n (n=1,2,3,.) (3.12)
Proof. Multiplying (3.11) by u], and summing over all m, noting (3.3), we obtain
(un+l’ un) < (un’ un~l).
We first use the forward time difference scheme
(uy, — ul)/At = Zp(t, u®) ul,. (3.13)
Because of (3.3), we have
(', u®) <[’
Therefore
@) < @t e < u) ) (3.14)

Remark. For scheme (3.11), the quasi-energy equality holds in (3.14) provided
condition (3.3} is satisfied with equality.

4, APPLICATIONS

4.1 The Advection Equation or Model Nonlinear Wave Equation

Consider an advection equation
u,+uu,=0 (4.1.1)

which possesses an infinite number of conservation laws [4]|. In order for the
difference equation to be stable for long time calculations, the difference equation
should be established on the basis of the energy conservation law rather than of the
quality conservation law.
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For Eq. (4.1.1), we take the differential operator

Aglt, )= (1 — O)u 3+%%l-‘x— (4.1.2)

Obviously (A,(f, u)u, u)=0 for every parameter 6. The difference operator .=/,
which approximates the differential operator 4, takes the form

Ayt )= (1 — Oud, + (8/2) d,u - (4.1.3)

By Lemma 4 in Section 2, it is not difficult to prove

(-3t ¥, 1) = 0. (4.1.4)

Hence .« 4(t, u*) is nonpositive. With u* = u”", scheme (3.6) takes the form

upt =l + 3wl dgult 4 Agulutt ). (4.1.5)

Using Theorem A, we have

[ B

i.e., scheme (4.i.5) is absolutely stable.
When u* = u", scheme (3.7) has the form

ultl=u" 4 (A/6) W Agultt + Agulult Yy + (At/6) (Ul Agul, + Agut ul).
(4.1.6)
Using the remark following Theorem A, we have
=M = flu™ || =[],

i.e., scheme (4.1.6) is absolutely stable.
In order to arrive at the second-order accuracy, we take f=1; then (3.10) is

reduced to
Upy = Up + (At/6)(un Ay ury, + Ayuy, - uy,),
up = up + (Atf6) [k doun, ' + dguun ) + (WkAgup + dgutug)l.

Using the remark following Theorem B, we obtain
"M = [Ju (] = [[u°].

A very similar result, but for a nonlinear scheme, is proved in |3, p. 142].
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4.2 Burgers’ Equation
We take the operator A, of (2.1) in the form

¢ 8 du- &

AG([’u):(l~9)uax+7—6;+vﬁ' (4.2.1)
Then the corresponding difference operator has the form
Ap(t,u)=(1—Q)udy+ (8/2) dgu- +v4, 4_. (4.2.2)
Take #=1% and notice Lemmas 2 and 4. It is not difficult to prove
(o, 5t u*)u, u) < 0. (4.2.3)

Then scheme (3.6) is of the form

it =u 4 (A3 uEd u" + idoutul Y tvded, A_ult. (4.2.4)

n+! we have

Upon setting u* = u
utt =t (A3 Ayt 3 Agul Y wvard A ult. (4.2.5)

Expanding this equation into the form of equations with filter |5|, we obtain some
relations between filter parameter k and parameter 6

k=0 corresponding to =1,
k=00 corresponding to =0,
k=2 corresponding to 6=1,
k=—1 corresponding to f=12,
k=1 corresponding to 0=2

In scheme (4.2.4), ie, 6=3 or k=1, let u*=u’,. Using relation (4.2.3) and
Theorem A, we have

™ HE< (-

Thus scheme (4.2.4) is absolutely stable. It is evident that if u* = u”"' and § =%
(ie., k=1) as in [5], then scheme (4.2.5) is also absolutely stable, but then the
equation is nonlinear and not convenient to solve.

Applying scheme (3.10), we get

uX=ul + (At B/3)undouy + dgupuy,) +vBAt4 4 _u,
uptl=ul 4+ (A)6)urd ult + Adgututt') + v(At/2) A, A_u"F' (4.2.6)
+ (dt/6)utdguy, + Agutuy) +v(A/2) A, 4 _ul,.

SR1/48/1.5
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With a similar argument (i.e., making use of relation (4.2.3) and applying
Theorem A), we can show that scheme (4.2.6) is absolutely stable,

" < fu]l
If B =3, this scheme has second-order accuracy.

4.3 KdV Equation
U= Ully, + Uy (4.3.1)

This equation possesses an infinite number of conservation laws. We establish a
difference equation based on the second conservation law in preference to one based
on the first conservation law.

For Eq. (4.3.1), we take the differential operator

o 6 ou &
Ag(t,u)=(1 ~9)u~a;+7—5;+w.

4.3.2)
A(r, u) is a nonpositive operator. The difference operator 4 takes the form
At u)y=(1—6)udy+ (6/2)Aqu- +4, 4,4 _.
Taking # =4 and using Lemmas 4 and 5, we get
(755t u™)u, u) = 0. (4.3.3)
Applying scheme (3.6), we get {7]
uttl=u (A3 dgu + Agulut Y+ At A, AgA _ult'. (4.3.4)
Using equality (4.3.3) and Theorem A, we get
Jla™ < ™
Applying scheme (3.7), we obtain 6]
untl =y + (Atf6)uldoul ' + dguluit ) + (A1/2) A, Ay 4 _up
+ (At/6)(ul dgur, + dgupul) + (dt/2) A, Ay A _u,. (4.3.5)
Using equality (4.3.3) and Theorem A, we get
[ M =[]
Using scheme (3.10), we get a predictor—corrector procedure (8]
uX=ul + (B At/3)ul dgul, + dgulnuly) + At A, A, 4 _ul,
Uttt =u + (At/6)urdoul ' + dguult') + (4/2) A, g4 _ujt!
(6wt Ayuly + Ayl + (A1/2) 4, Agd .
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This scheme has second-order accuracy. Applying Theorem B and equality (4.3.3),
we obtain

Fae = " .

4.4 The Fquation
u,=uuy 4y, . (44.1)

This class of equations possesses at least three conservation laws [9].
For Eq. (4.4.1) we take the differential operator

d 8 oul. oF!

Ae(t,u)z(l—(ﬁ’)lt"a—x—i—qul P +c’)x2’“ . (4.4.2)
Ag(t, u) is a nonpositive operator because
(A4,(t, w)u, u)=0.
The difference operator .»7, takes the form
ot -u)y=(1—0)u'dy+(6/(q+ 1)) dou- + 4", 4,4"_. (4.4.3)

Taking =g + 1/q + 2, we get

A givgenbi) =1/ +2))u'do+ (1/(q +2)) dou’- + 4, 4,47 . (4.4.4)

Applying Lemmas 4 and 7, we obtain

(+ i1y gt u*)u,u)=0. (4.4.5)

Applying schemes (3.6), (3.7), and (3.10), respectively, we obtain
uptt=ul + (At/(q + 2D L) doupt" + Aol )" ult | + At A", Ay A" ut,
(4.4.6)
urtl=ul + (@ dt/(q + )| (%) doult' + Adg(us)" unt '] + At ad”, Ay A" u" !
+ (1 —a)(dt/(q + 2)[(u5)" dgu” + Ag(uz)" up) + (1 —a) At d', 4,47 uy,,

(4.4.7)
U =up + B At/(q + 2)[(ud)" dgup, + AyWl)" un ] + B Ar A7, Ay A" uyt',
uttl=y" 1 a4t [(@a)* dgult' + dg@i)* ult '} + adt A", AyA" u" "
m — %m q+2 m 0%m 0\*m m + 09 —%m
At
(1= @)= (5 Aol + 4ot 3] + (1 = @) 40 47 4,47

(4.4.8)
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Using relation (4.4.5) and the Lemmas and theorems for scheme (4.4.6), we have
[l =M< |
For schemes (4.4.7) and (4.4.8), taking a = 3 we have
[ = (u"].

Moreover, scheme (4.4.8) has second-order accuracy when § = 3.
For the equation

u,=uu, +auy, ,, (4.4.1")

we only considered linear stability in [10]; now we consider nonlinear stability and
show the following:

THEOREM D. (1) The symmetric Crank—Nicholson scheme for (4.4.1') is
absolutely stable when a >3, 0= (q + 1)/(q + 2);

(2) The right Crank—Nicholson scheme for (4.4.1') is absolutely stable when
(1) +a>0,a>3 0=(q+ 1)/(g+2)

(3) The left Crank—Nicholson scheme for (4.4.1') is absolutely stable when
(-1)'-a<0,a>3 0=(q+1)/(q+2)

Proof. Scheme (4.4.7) can be rewritten in the form

U= Ay, e nGU*W" +adtu,) (4.4.7")

Multiplying (4.4.7’) by u" + a 4t u,, and taking the inner product, from (4.4.5) we
have

(u, u" + adtu,)=0.
Applying Lemma 1, we get
3w 1), = 1 At {lu l* + e At |Ju,|* =0,

i-e-a % ”u”tz - At(% - a) H ut||2 =0.
So when a >} and 6= (g + 1)/(g + 2) the symmetric Crank—Nicholson scheme is
absolutely stable.

DerFINITION. The Crank—Nicholson scheme is called right if 0¥ *'/ox* "'~
Aa .
For the right Crank—Nicholson scheme, the difference operator has the form

e —

g vpar o) =(1/(q + 2))udy + (1/(q + 2)) 4ou- +ad’ 4" .
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(See Fig. 1a.) Applying Lemmas 4 and 6{2), we obtain

(Ve oo u¥)w,u) <0, when (—1)*'-a<0, ie, (=1)-a>0.

Multiplying (4.4.6) by u" + a At u, and taking the inner product, from (4.4.7) we
have

(u,, u" +adtu,)<0.
Applying Lemma 1, we get
3 lullf = 4rG; — a) flu, [P <O.

So when a>3, (—1)-a>0, =(q+ 1)/(g+2), the right symmetric Crank—
Nicholson scheme is absolutely stable.

DeFINITION.  The Crank-Nicholson scheme is called left if 87 "'/ox™ "'~
A7 470,

For example, the stencil when r=1 is shown in Fig. 1b.
For the left Crank—Nicholson scheme, the difference operator has the form

g niarn(bu) =1/ +2))u'dy + (1/(q + 2)) dgu’- +ad’, 47"

Applying Lemmas 4 and 6(1), we obtain

S—,,

e ——————
(s nigenGUF)u,u) <0 when (—1)"-a <0.

The proof of (3) is the same.

a

® I @ —o

*— —o— -@
m-=1 m m+1 m+2
b

F .

— —e— —9
m-2 m-=1 m m+1

Fic. 1. (a) Stencil for the right Crank-Nicholson scheme. (b) Stencil for the left Crank—Nicholson
scheme.
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4.5 The Equation
u = uu, +(=1)"" u,,. (4.5.1)

This class of equations possesses only one conservation law {6]. For Eq. (4.5.1),
we have the differential operator

At u):(l—e)u“%+;i—lig-:—'+(—1)’“ :xz;,. (4.5.2)
Ag(t, u) is a nonpositive operator because
(Ag(t, w)u, u) < 0.
The difference operator .«7,; takes the form
Ag(t,uy=(1—0) u'dy + (6/(g + 1)) dgu®- + (=1)"*" 4", 4" . (4.5.3)

Taking 6= (g + 1)/(g + 2), we get
Sy rgealty )= (1/(q +2))u? - 4y + (1/(g +2)) dgu- + (=1)* 1 4, 4.
(4.5.4)

Applying Lemmas 3 and 4, we obtain
(gt 1@ B u*)u,u)<0. (4.5.5)
Applying schemes (3.6), (3.7), and (3.10), respectively, we obtain
ult ' =ul + (At/(g + 2D W) dgul "+ Agu) ul | + Ar AT, AT ult (4.5.6)
wptt =+ (@ At)(g + D))" douly + Ay(ut)" u |
+ad(=1)yt A A unt!
+((1 = a) 4t/(q + 2)[(u3)" doup + Ao(u3)" up]
+ (1 —a)d(=1)"*" A" 4" ul, (4.5.7)
U =y + (B At/ (q + )(ui)" douy, + Ag(us)" up| + B A(=1)""" A" A" u,
uy' = up + (@ dt/(q + 2)|(u5)* dgup' ' + Ao(uf)* up
+adi(—1)*t A A ult! (4.5.8)
+ (1 — a)(dt/(q + 2D u5)* douy, + do(us)* us, |
+ (I —a) A1) A", A" ul,.
Scheme (4.5.7) can be rewritten in the form

Uy =g 1004 (b UH)U" + a i u,). @.5.7")
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Multiplying (4.5.7') by u" + a 4t u, and taking the inner product, from (4.5.7) we
have
(wu" +adtu)<0.

Applying Lemma 1, we have
lullf — 4G —a) ful* 0.

THEOREM E. The symmetric Crank-Nicholson scheme for (4.5.1) is absolutely
stable when a >3, 0= (¢ + 1)/(q + 2).

Remark. Predictor-corrector scheme (4.5.8) is absolutely stable when a > 3 and
0= (g + 1)/(g + 2), and has second-order accuracy wen f =1, a = 1.

5. NUMERICAL COMPUTATIONS

In the present section, we discuss only Burgers’ equation
U= Ul + Vs, (5.1)
The initial and boundary conditions are taken to be
u(x,0)=—1 for —0.5<x<0,
=+1 for 0 x<0.5.
The exact solution is given to a good approximation by the steady state
u = tanh(x/2v). (5.2)

All the solutions discussed in the present paper are obtained with 128 equally spaced
grid points, Ax = 1/128 =0.007825. We calculate the solution of (5.1) with the
difference scheme (4.2.6), which can be written in the form

At A4t v At At
- * — m+t1 n+1l
(12AXum+12Axumvl 2Ax2>um +(1+VAx2)um
4 At vdr
- <12Ax U+ Ty gy Y T 2Ax2>u”’:l‘: ms (5.3)

where

fn:un+ﬂ u* Upiy = Up_ Up Uy — Up Uy
" "6 m 2 Ax 2 Ax

v At
sz(“"mﬂ = 2up +up )
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At,B un _ un B (un )2 . (un ~ )2
* __ g0 n “m+1 m—1 m+1 m—1
Hn = Hmt 3 [(“’" 2x )+ 2Ux ]

vp At
+ sz U1 — 2Up + U )

In matrix form, we have Au"*!=u", where A =1+ AtR, R is an N X N matrix
depending on Ax and U", and [ is the unit matrix. It is not difficult to show that
(AU, U)=| U||*. Thus by Schwarz’s inequality, we have |AU| > ||U]. Hence 4 is
invertible and in practice we solve Au"*' = 4" with a band solver.

Computations were done on machine model 013 of the Computer Center of the
Academia Sinica. Numerical solutions of system (5.3) have been obtained for (8 = 3,
a =13)v=10.001, 0.002, 0.003, 0.004, 0.005, and 0.01. See Table I. We list only half

of the table because the solution is antisymmetric. As our time step we select
At =0.01.

ACKNOWLEDGMENT

The author is sincerely grateful to Professor Feng Kang for his guidance and constant encouragement
during the progress of this work, and thanks Professor W. Tornig for his valuable remarks.

REFERENCES

1. N. A. PHiLLIPS, “The Atmosphere and the Sea in Motion,” pp. 501--504, 1959,

2. A. ARAKAWA, J, Comput. Phys. 1 (1966), 119.

. R. D. RicHTMYER AND K. W. MorTON, “Difference Methods for Initial Value Problems,” Wiley—
Interscience, New York, 1967.

. G. Z. Tu aND M. Z. QIN, in “Report on the Soliton Workshop,” Jadwisin, Poland, August 1979.

. P. K. KHosLA aND S. G. RuBIN, J. Eng. Math. 13(2) (1979), 127.

. P.-v. Kvo, Kexue Tongbao 10 (1978), 592.

. K. Gopa, J. Phys. Soc. Japan 39(1) (1975), 229.

. H.-M. Wu, in “Report on the Soliton Workshop,” Jadwisin, Poland, August 1979.

9. M. Z. QN anD G. Z. Tu, Acta Math. Appl. Sinica 5 (2) (1982), 156.

10. M. Z. QIn, Kexue Tongbao 27 (5) (1982), 465.

I1. B. FORNBERG, Math. Comput. 27 (1973), 45.

12. A. MaIpA AND S. OSHER, Numer. Math. 30 (1978), 429.

(o8]

00 ~1 O\ L B



